20 research outputs found

    Biomimetic emulsions reveal the effect of homeostatic pressure on cell-cell adhesion

    Full text link
    Cell-cell contacts in tissues are continuously subject to mechanical forces due to homeostatic pressure and active cytoskeleton dynamics. While much is known about the molecular pathways of adhesion, the role of mechanics is less well understood. To isolate the role of pressure we present a dense packing of functionalized emulsion droplets in which surface interactions are tuned to mimic those of real cells. By visualizing the microstructure in 3D we find that a threshold compression force is necessary to overcome electrostatic repulsion and surface elasticity and establish protein-mediated adhesion. Varying the droplet interaction potential maps out a phase diagram for adhesion as a function of force and salt concentration. Remarkably, fitting the data with our theoretical model predicts binder concentrations in the adhesion areas that are similar to those found in real cells. Moreover, we quantify the adhesion size dependence on the applied force and thus reveal adhesion strengthening with increasing homeostatic pressure even in the absence of active cellular processes. This biomimetic approach reveals the physical origin of pressure-sensitive adhesion and its strength across cell-cell junctions.Comment: 20 pages, 5 figure

    Evidence for marginal stability in emulsions

    Full text link
    We report the first measurements of the effect of pressure on vibrational modes in emulsions, which serve as a model for soft frictionless spheres at zero temperature. As a function of the applied pressure, we find that the density of states D(omega) exhibits a low-frequency cutoff omega*, which scales linearly with the number of extra contacts per particle dz. Moreover, for omega<omega*, D(omega)~ omega^2/omega*^2; a quadratic behavior whose prefactor is larger than what is expected from Debye theory. This surprising result agrees with recent theoretical findings. Finally, the degree of localization of the softest low frequency modes increases with compression, as shown by the participation ratio as well as their spatial configurations. Overall, our observations show that emulsions are marginally stable and display non-plane-wave modes up to vanishing frequencies

    Etude Biomimétique du cortex cellulaire et ses applications

    No full text
    The cytoskeleton is a composite and versatile structure that confers complex mechanical properties to the cells. In particular the actin cytoskeleton dynamically polymerizes underneath the cell membrane and provides the necessary forces for cell shape changes and cell motility. In order to study this module in a simplified environment we built a biomimetic actin inside a liposome. The necessary ingredients for actin polymerization are encapsulated inside a liposome and the nucleation is triggered at the membrane just like in biological cells. We were able to reproduce an actin shell in the liposomes, similar to the actin cortex in cells. We then studied its mechanical properties through spreading experiments, which revealed behavior close to the one of real cells. These minimal systems were also used to decipher the mechanisms of the entry of the Shiga toxin in cells, sheding light on the key role of the actin cortex in this process.Le cytosquelette des cellules est une structure composite et versatile qui leur confère des propriétés mécaniques extrêmement complexes. En particulier, le cortex d'actine qui s'assemble de manière dynamique sous la membrane cellulaire fournit la force nécessaire aux déformations et au mouvement de la cellule : la polymérisation de l'actine permet aux filaments en formation de pousser la membrane et les moteurs moléculaires génèrent des forces contractiles. L'utilisation de systèmes biomimétiques permet d'isoler des modules particuliers du cytosquelette pour les étudier indépendamment de façon simplifiée. Une expérience de reconstitution du cortex d'actine in vitro a été mise au point dans ce but. Les protéines et métabolites nécessaires pour la polymérisation de l'actine sont ainsi introduits dans un liposome et la réaction est localisée à la membrane, en y greffant l'activateur de la polymérisation de l'actine, sur le modèle du cortex cellulaire. Une fois la polymérisation déclenchée, nous sommes arrivés à reproduire un gel d'actine à la membrane, formant une coque. Les propriétés mécaniques de ce système simplifié sont alors étudiées par des expériences qui caractérisent leur dynamique d'étalement sur des surfaces. Les résultats sont comparés à ceux obtenus sur des cellules, et reproduisent une bonne partie des comportements cellulaires. On utilise également ces liposomes dans une situation physiologique: l'internalisation de la toxine de Shiga dans les cellules et nous montrons que la toxine est internalisée dans un système aussi épuré que des liposomes comportant un cortex reconstitué, prouvant le rôle important de l'actine dans ce processus

    A scalable assay for chemical preference of small freshwater fish

    No full text
    International audienceSensing the chemical world is of primary importance for aquatic organisms, and small freshwater fish are increasingly used in toxicology, ethology, and neuroscience by virtue of their ease of manipulation, tissue imaging amenability, and genetic tractability. However, precise behavioral analyses are generally challenging to perform due to the lack of knowledge of what chemical the fish are exposed to at any given moment. Here we developed a behavioral assay and a specific infrared dye to probe the preference of young zebrafish for virtually any compound. We found that the innate aversion of zebrafish to citric acid is not mediated by modulation of the swim but rather by immediate avoidance reactions when the product is sensed and that the preference of juvenile zebrafish for ATP changes from repulsion to attraction during successive exposures. We propose an information-based behavioral model for which an exploration index emerges as a relevant behavioral descriptor, complementary to the standard preference index. Our setup features a high versatility in protocols and is automatic and scalable, which paves the way for high-throughput preference compound screening at different age

    Quasistatic Microdroplet Production in a Capillary Trap

    No full text
    International audienc

    Specificity, flexibility and valence of DNA bonds guide emulsion architecture

    Full text link
    The specificity and thermal reversibility of DNA interactions have enabled the self-assembly of crystal structures, self-replicating materials and colloidal molecules. Grafting DNA onto liquid interfaces of emulsions leads to exciting new architectural possibilities due to the mobility of the DNA ligands and the patches they form between bound droplets. Here we show that the size and number of these adhesion patches (valency) can be controlled. Valence 2 leads to flexible polymers of emulsion droplets, while valence above 4 leads to rigid droplet networks. A simple thermodynamic model quantitatively describes the increase in the patch size with droplet radii, DNA concentration and the stiffness of the tether to the sticky-end. The patches are formed between droplets with complementary DNA strands or alternatively with complementary colloidal nanoparticles to mediate DNA binding between droplets. This emulsion system opens the route to directed self-assembly of more complex structures through distinct DNA bonds with varying strengths and controlled valence and flexibility.Comment: This paper has been withdrawn by the author due to publication issu

    Spreading Dynamics of Biomimetic Actin Cortices

    No full text
    Reconstituted systems mimicking cells are interesting tools for understanding the details of cell behavior. Here, we use an experimental system that mimics cellular actin cortices, namely liposomes developing an actin shell close to their inner membrane, and we study their dynamics of spreading. We show that depending on the morphology of the actin shell inside the liposome, spreading dynamics is either reminiscent of a bare liposome (in the case of a sparse actin shell) or of a cell (in the case of a continuous actin shell). We use a mechanical model that qualitatively accounts for the shape of the experimental curves. From the data on spreading dynamics, we extract characteristic times that are consistent with mechanical estimates. The mechanical characterization of such stripped-down experimental systems paves the way for a more complex design closer to a cell. We report here the first step in building an artificial cell and studying its mechanics

    Diffusion through Nanopores in Connected Lipid Bilayer Networks

    No full text
    International audienc
    corecore